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Abstract

A review is given of the theory of vortex sound with emphasis on sound production by vortex–surface interactions

involving rigid and deformable, compact and noncompact moving bodies. The analysis is facilitated by use of the

‘compact’ approximation to the acoustic Green’s function in cases where the solid surface is either acoustically compact or,

for noncompact bodies, where the surface supports locally compact regions of ‘noisy’ flow identified by the presence of

singularities in the ‘Kirchhoff vector’ of Green’s function. The noncompact problem of the compression wave generated by

a high-speed train entering a tunnel is discussed as an example of how accurate predictions of sound generation by

identified distributions of vorticity can frequently be made by analytical means when the more conventional numerical

approach becomes intractable.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Equations of aerodynamic sound

Motion within an unbounded homogeneous fluid, which is at rest at infinity, is possible only in the presence
of vorticity. If the fluid is compressible a small fraction of the kinetic energy of the vortex field will radiate
away as sound. This is the problem treated by Lighthill [1] in his original theory of aerodynamic sound. It was
argued, that although turbulence is typically produced by flow over a solid boundary or by the instability of a
free shear layer, the influence of boundaries on the production of sound, as opposed to the production of
vorticity, can often be ignored. The theoretical problem was accordingly reduced to the study of the free-field
mechanism involved in the conversion of rotational kinetic energy into acoustic waves that propagate as
longitudinal vibrations of fluid particles. Lighthill unambiguously identified the source of sound at low Mach
number to be fluctuations in the turbulence Reynolds stress. Shortly after, Powell [2] proposed for low Mach
number flows an explicit vortex representation of the acoustic source.

Most flows of technological interest are of high Reynolds number and turbulent. Lighthill represented the
acoustic sources in a turbulent fluid of density rðx; tÞ and velocity viðx; tÞ by a distribution of ‘quadrupoles’
whose strength per unit volume is dominated by the Reynolds stress rvivj. He did this by establishing an exact
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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analogy between the production of sound by turbulence in a fluid whose mean pressure, density and sound
speed are, respectively po, ro and co at large distances from the source flow, and that produced in an ideal,
stationary acoustic medium (of mean pressure, density and sound speed equal to po, ro and co, respectively)
forced by the stress distribution

Tij ¼ rvivj þ ððp� poÞ � c2oðr� roÞÞdij � sij, (1)

where p is the pressure and sij is the viscous stress. Tij is the Lighthill stress tensor, which determines the
quadrupole source strength in Lighthill’s equation

1

c2o

q2

qt2
� r2

� �
½c2oðr� roÞ� ¼

q2Tij

qxiqxj

. (2)

Fluctuations in c2oðr� roÞ are generated by the stress distribution Tijðx; tÞ and propagate away as sound waves
from the turbulent source flow. In the distant field the background is quiescent and unsteady motions consist
entirely of small-amplitude pressure perturbations pðx; tÞ � po � c2oðrðx; tÞ � roÞ.

Lighthill’s equation is an exact rearrangement and combination of the momentum and continuity
equations. It represents an effective means of calculating the sound produced by turbulence only when Tij is
known. The Lighthill tensor Tij actually accounts not only for the production of sound but also for its
nonlinear self-modulation, for its convection, scattering and refraction by the turbulence and by sound speed
variations, and for its attenuation by thermal and viscous diffusion. In many applications nonlinearity is
sufficiently weak to be neglected within the source region, although it may cumulatively affect propagation to
a distant observer. Convection and refraction are important for turbulence contained in an extensive mean
shear layer or adjacent to a large, quiescent region whose mean thermodynamic properties differ from those in
the radiation zone, and correspond to contributions to Tij from linear perturbations of the mean background
flow. Safe predictions can be made using Lighthill’s equation, provided all of these effects are small or are
sufficiently well understood to be explicitly included in Tij , either analytically [3–5] or from data derived from
the numerical modelling of compressible motions in the source region. When this is not possible predictions of
Lighthill’s equation are strictly valid only when the characteristic Mach number M satisfies M2

51.
Lighthill’s equation can be recast so that vorticity is explicitly identified as the ultimate source of sound by

adopting the total enthalpy B as the acoustic variable instead of Lighthill’s c2oðr� roÞ [6,7]. The sources are
then confined to regions where the vorticity xa0 and where rsa0, where s is the entropy. In the important
case where the source flow is effectively homentropic (e.g. in a homogeneous fluid with no combustion), the
modified Lighthill equation reduces to

D

Dt

1

c2
D

Dt

� �
�

1

r
r � ðrrÞ

� �
B ¼

1

r
divðrx ^ vÞ, (3)

where x ^ v is the Lamb vector.
For this type of motion r � rðpÞ and

B ¼

Z
dp

r
þ

1

2
v2. (4)

Furthermore, from the Bernoulli equation it follows that in the absence of vorticity and moving boundaries B

is equal to a constant throughout the fluid that may be assumed to vanish.
Outside the source flow, the unsteady motion is entirely irrotational. It can be represented by a velocity

potential jðx; tÞ, in terms of which B � �qj=qt determines the amplitude of the propagating sound waves. B is
related to the acoustic pressure in the far field by

1

r
qp

qt
¼

DB

Dt
. (5)

When there is no mean flow at infinity p� po ¼ roB.
The wave-operator on the left of the vortex sound equation (3) involves terms that account for nonlinear

propagation of sound, because the local values of the density r, sound speed c and the flow velocity v are
strictly dependent on the acoustic disturbance. Similarly, in a turbulent source flow whose extent exceeds
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many characteristic acoustic wavelengths, or where a mean shear layer supplies a large linear contribution to
the fluctuating part of x ^ v, the vortex source causes scattering and refraction of the sound, and this must be
regarded as an implicit component of the vortex source of Eq. (3). When such effects are ignored, the
restrictions underlying the use of Eq. (3) are essentially the same as for Lighthill’s original form (2).

When M is small, local mean values of r and c differ from their uniform respective values ro and co by terms
of relative order M2

51. The vortex sound equation (3) is then simplified by putting c ¼ co and r ¼ ro, and
by explicitly neglecting nonlinear effects of propagation and the scattering of sound by the vorticity.
The production of sound is then governed by

1

c2o

q2

qt2
� r2

� �
B ¼ divðx ^ vÞ. (6)

1.2. Free-field turbulence

The solution with the outgoing wave behaviour of Eq. (2) for Lighthill’s problem in which the turbulence
resides in an unbounded fluid is the ‘retarded potential’ integral

c2oðr� roÞðx; tÞ ¼
1

4p
q2

qxi qxj

Z 1
�1

Tijðy; t� jx� yj=coÞ

jx� yj
d3y. (7)

Take the coordinate origin within the source flow. In the acoustic region (where jxjbjyj for all relevant
values of y) we can put p� po ¼ c2oðr� roÞ and jx� yj � jxj � x � y=jxj. Therefore, suppressing the irrelevant
constant pressure po, the acoustic pressure becomes

pðx; tÞ �
xixj

4pc2ojxj
3

q2

qt2

Z
Tij y; t�

jxj

co

þ
x � y

cojxj

� �
d3y; jxj ! 1. (8)

The sound radiated by uncorrelated ‘eddies’ in the source flow may be calculated separately for each eddy;
the acoustic power for the whole flow is then obtained by simple addition of the separate sound powers. If the
source region has volume Vo and a typical eddy has diameter �‘ there are �V o=‘

3 statistically independent
eddies producing sound of frequency f�v=‘ and wavelength co=f�‘=Mb‘, in low Mach number flow where
M�v=co51. Each eddy is therefore acoustically compact.

Suppose the integral in Eq. (8) is restricted to the single eddy, and take the origin at O as indicated in Fig. 1.
The travel time jx� yj=co of sound produced by the source element at y within the eddy differs from the
nominal mean travel time jxj=co from O by x � y=cojxj, and the corresponding acoustic phase difference
�f � ðx � y=cojxjÞ�M51. Thus all parts of the eddy radiate with effectively the same phase, and the retarded
time variations x � y=cojxj across the eddy can be neglected in the integrand. Hence there is no destructive
interference between different contributions to the integral over the eddy and, because Tij�rov2 and q=qt�f ,
the order of magnitude of the acoustic pressure for one eddy is

p�
‘

jxj

rov4

c2o
¼

‘

jxj
rov2M2. (9)
Fig. 1. Radiation from a source at y to an observer at x in the acoustic far field.



ARTICLE IN PRESS
M.S. Howe / Journal of Sound and Vibration 314 (2008) 113–146116
The acoustic power radiated by the eddy is just the mean acoustic intensity p2=roco multiplied by the surface
area 4pjxj2 of a large sphere centred on the eddy �rov8‘2=c5o ¼ rov3M5‘2 — Lighthill’s ‘eighth power’ law
[1,8–10]. The total power radiated by the V o=‘

3 eddies in the source flow is therefore P�ðrov3=‘ÞM5V o. But
the mechanical power required to maintain the kinetic energy of a statistically steady turbulent source is
Po�ðrov3=‘ÞV o [11], so that the efficiency with which turbulence kinetic energy is converted into sound is
P=Po�M5. This is smaller than 0.01 for Mo0:4, confirming Lighthill’s hypothesis that sound is an
infinitesimal by-product of the turbulent activity.
1.3. Influence of a solid boundary

Let us repeat the steps leading to Lighthill’s order of magnitude estimate (9) for the acoustic pressure by
starting from the solution of Eq. (6) for the sound generated by a single eddy of diameter ‘, which we first
write in the form

pðx; tÞ ¼
ro

4p

Z
qðx ^ vÞj

qyj

y; t�
jx� yj

co

� �
d3y

jx� yj

�
ro

4pjxj

Z
qðx ^ vÞj

qyj

y; t�
jxj

co

þ
xiyi

cojxj

� �
d3y; jxj ! 1, (10)

where the differential operator q=qyj is applied only to the dependence of ðx ^ vÞjðy; tÞ on its first argument.
Because the x � 0 outside the source region, we find by expanding the integrand in powers of the retarded

time variation xiyi=cojxj�Oð‘=coÞ and integrating by parts

pðx; tÞ � �
roxi

4pcojxj
2

q
qt

Z
ðx ^ v � ryiÞ y; t�

jxj

co

� �
d3y

�
roxixj

4pc2ojxj
3

q2

qt2

Z
yiðx ^ vÞj y; t�

jxj

co

� �
d3y; jxj ! 1. (11)

The first term on the right-hand side represents dipole radiation and is identically zero when the source flow
is regarded as incompressible. This follows from the identity x ^ v ¼ ðq=qxjÞðvjvÞ � rð

1
2 v2Þ for incompressible

flow and the condition that the hydrodynamic field vanishes at infinity. The remaining term gives the usual
quadrupole sound whose order of magnitude is readily seen to be given by Eq. (9).

These conclusions are altered when the turbulence is adjacent to a solid boundary. Consider first the sound
produced by an eddy near an acoustically compact rigid body. The representation (10) becomes [6]

pðx; tÞ ¼
ro

4p

Z
qðx ^ vÞj

qyj

y; t�
jX� Yj

co

� �
d3y

jX� Yj
,

where
X ¼ x� u	ðxÞ

Y ¼ y� u	ðyÞ

)
Kirchhoff vectors for the body. (12)

The vector components X jðxÞ and Y jðyÞ may be interpreted as the velocity potentials of incompressible flow
past the body having unit speed in the j-direction at large distances from the body; j	j corresponds to the
velocity potential of flow produced by rigid body motion of the body at unit speed in the j-direction, and
decreases like 1=ðdistanceÞ2 at large distances from the body.

The first nontrivial term in the expansion of the integrand in Eq. (12) in powers of the retarded time
variation is the dipole approximation

pðx; tÞ �
ro

4pjxj

Z
qðx ^ vÞj

qyj

y; t�
jxj

co

þ
xiY i

cojxj

� �
d3y

� �
roxi

4pcojxj
2

q
qt

Z
ðx ^ v � rY iÞ y; t�

jxj

co

� �
d3y; jxj ! 1. (13)
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Fig. 2. The dipole strength of a spinning vortex pair is (a) zero in the uniformly spaced streamlines of the ‘free space’ velocity potential yi

and (b) nonzero when spinning in the nonuniform streamlines of the potential Y i ¼ yi � j	i ðyÞ defining flow past a curvilinear solid

boundary S.
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The order of magnitude of the radiation from an eddy of dimension ‘ comparable in size to the solid body is
now easily estimated to be p�rov2Mð‘=jxjÞ [12], which at low Mach numbers exceeds the quadrupole sound
produced by a free-field eddy by a factor �Oð1=MÞb1. The integral in Eq. (13) is proportional to the i

component of the unsteady force exerted on the fluid as a result of the net normal pressure distribution on the
body produced by its interaction with the turbulent eddy [6,7]; this force was identified by Curle [12] as
determining the amplitude of the dipole radiation.

Fig. 2 gives a graphic illustration of how the shape of the surface S of the solid controls the amplitude
of the dipole sound. Here it is supposed that the eddy assumes the form of a ‘hydrodynamic test particle’
for which the distribution of x is locally like a ‘spinning’ vortex pair [2], where for the two vortices x

takes the same value, each with total circulation G, but their convection velocities v ¼ 
V, say, are equal
and opposite. For the free-field case, ryi ð¼ iÞ in the first integral of Eq. (11) defines the uniform stream-
lines of a hypothetical flow at unit speed in the i-direction. In the integrand x ^ v � ryi � x � v ^ ryi,
where for each vortex v ^ ryi ¼ 
V ^ ryi determines in magnitude and direction the rate at which
the vortex cuts across the streamlines of this flow. The aggregate rate evidently vanishes for uniform
flow, because ryi is the same for each vortex (Fig. 2a). However, when the vortex pair is near the
solid boundary S potential flow streamlines must curve around the body along the direction of the
vector field rY i, which typically assumes different values for each vortex so that cancellation does not
occur. The differences for the two vortices become large when S is highly curved (near a sharp edge, say) so
that rY i must then be a rapidly varying function of position assuming very different values for the two
vortices [9,13,14].
2. Representation of sound in the presence of a moving body

2.1. Green’s function

Sources of sound of dipole type are particularly important in noise control engineering involving moving

boundaries [6,15,16]. The free-field solutions (7) and (10) or the particular solution (13) for a compact,
stationary rigid boundary must then be augmented by additional contributions from sources distributed on
the moving boundary. Computationally intensive prediction schemes for aeronautical applications involving
high-speed fan and rotor blades are frequently based on the Ffowcs Williams and Hawkings representation of
the surface terms for Lighthill’s equation (2) [4,17,18]. Surface motions at lower Mach numbers (M�0:4 or
less) are often more efficiently treated by means of the vortex sound equation (3) [19,20], and this approach is
discussed in the remainder of this paper.

Predictions in such cases usually depend on the introduction of an acoustic Green’s function Gðx; y; t; tÞ.
This satisfies Eq. (3) with the right side replaced by a point source and the wave-operator expressed in a
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self-adjoint form (by multiplication by r [6,21])

r
ro

D

Dt

1

c2
D

Dt

� �
�

1

ro

r � ðrrÞ
� �

G ¼ dðx� yÞdðt� tÞ; G ¼ 0 for tot, (14)

where the factor 1=ro is inserted for convenience.
2.2. General representation of sound

To fix ideas, consider the problem of solving equation (3) in the infinite region V bounded internally by a
material control surface Sþ defined by f ðx; tÞ ¼ 0 (so that Df =Dt � 0) such that f ðx; tÞ40 in the region V
outside Sþ (Fig. 3). Assume that any fixed or moving solid boundaries S lie within Sþ. Multiply Eq. (3) by
rH � rHðf Þ, where H denotes the Heaviside step function, and form the inhomogeneous equation for the new
variable HroB:

r
ro

D

Dt

1

c2
D

Dt

� �
�

1

ro

r � ðrrÞ
� �

ðHroBÞ ¼ r � ðHrx ^ vÞ þ rrH �
qv
qt
� r � ðrBrHÞ þ Zr � ðrH ^ xÞ, (15)

where Z is the shear coefficient of viscosity and the momentum equation has been used in Crocco’s form [6]

qv
qt
þ rB ¼ �x ^ v�

Z
r
curlx. (16)

Viscosity can usually be ignored in ‘noisy’ high Reynolds number flows. For this reason the contribution to
Crocco’s equation (16) from the bulk viscosity has been discarded, because its effect is small everywhere.
However, the shear viscosity Z is responsible for possibly significant frictional forces on S and is therefore
retained, but in doing so it is also assumed that Z ¼ constant at low Mach numbers.

The first source term on the right of Eq. (15) is distributed in V outside the control surface Sþ (as in Fig. 3).
The remaining sources all involve rH � rf dðf Þ and are equivalent to dipole and monopole sources distributed
on Sþ. The sources determine HroB everywhere, as outgoing acoustic waves at large distances from Sþ and
also inside the region bounded by Sþ where Hðf Þ ¼ 0.
Fig. 3. The material control surface Sþ defined by f ðx; tÞ ¼ 0 encloses the moving boundary S.
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The solution of Eq. (15) can be expressed in terms of any causal Green’s function Gðx; y; t; tÞ that satisfies
Eq. (14) for x and y within the fluid (outside S in Fig. 3). Then, within the fluid

ðHroBÞðx; tÞ ¼

ZZ 1
�1

Gðx; y; t; tÞ r � ðHrx ^ vÞ � r � ðrBrHÞ

�

þrrH �
qv
qt
þ Zr � ðrH ^ xÞ

�
ðy; tÞd3ydt, (17)

where the integrations can be formally taken over all space and over all values of the retarded time t. This
result is simplified by integrating by parts and by making use of the formula

R1
�1
ð�ÞrH d3y ¼

H
Sþ
ð�ÞdS, where

dS is the surface element on Sþ directed into the outer region V. The surface Sþ is then allowed to shrink
down onto the retarded position of S, thereby yielding for positions x within the fluid a generalised Kirchhoff
integral representation of sound [6,17,22,23]

roBðx; tÞ ¼ �

ZZ
V

ðrx ^ vÞðy; tÞ �
qG

qy
ðx; y; t; tÞd3ydtþ

Z I
S

ðrBÞðy; tÞ
qG

qy
ðx; y; t; tÞ � dSdt

þ

Z I
S

Gðx; y; t; tÞ r
qv
qt

� �
ðy; tÞ � dSdtþ Z

Z I
S

xðy; tÞ ^
qG

qy
ðx; y; t; tÞ � dSdt. (18)

The surface integral involving rB on the right-hand side is eliminated by requiring the normal derivatives
qG=qyn; qG=qxn to vanish, respectively, for y and x on S. The remaining terms can then be arranged in the
form

roBðx; tÞ ¼

Z I
S

Gðx; y; t; tÞ r
qv
qt

� �
ðy; tÞ � dSdt�

ZZ
V

ðrx ^ vÞðy; tÞ �
qG

qy
ðx; y; t; tÞd3y dt

þ Z
Z I

S

xðy; tÞ ^
qG

qy
ðx; y; t; tÞ � dSdt, (19)

where roBðx; tÞ � pðx; tÞ in the linear acoustic region, far from the sources.
The surface integral involving the normal component of qv=qt determines the influence of surface motions

and is nominally equivalent to a distribution of monopole sources on S. The volume integral represents the
sound generated by vortex sources within the fluid, taking account of the surface S, whose presence determines
the functional form of Gðx; y; t; tÞ. The final integral supplies the contribution from frictional forces on S.

3. Sound produced by a compact body in arbitrary, deformable motion

3.1. Compact Green’s function

In an important class of practical problems the flow Mach number is small, the fluid can be regarded to be
in a mean state of rest at large distances from the boundary S, and S or some prominent geometrical feature of
S, is acoustically compact, that is, small compared to the wavelength of sound produced by the motion. The
production of sound is then governed by Eq. (6) with solution (19) in which r in the integrands can be replaced
by the mean density ro. For a rigid surface S the dominant source is then of dipole type and the sound can be
computed from Eq. (19) by replacing Gðx; y; t; tÞ by its compact approximation [6,7,24]. But the compact
Green’s function is also applicable when the surface S is in arbitrary low Mach number motion, involving
changes in the shape and interior volume with time. In such cases there is usually a monopole component of
the sound, and the compact Green’s function provides the solution correct to terms of monopole and dipole
order in a formal multipole expansion of the full solution. It is given by Howe [6,7,24]:

Gðx; y; t; tÞ ¼
1

4pjX� Yj
d t� t�

jX� Yj

co

� �
, (20)

where X ¼ Xðx; tÞ; Y ¼ Yðy; tÞ are respectively representations of the Kirchhoff vector for S, defined as in
Eq. (12), but now dependent on time because of the motion of S. Representation (20) is applicable provided at
least one of the points x; y lies in the acoustic far field of S.
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Eq. (20) is a formal expression for the compact Green’s function that clearly reduces to the free space
Green’s function

Gðx; y; t; tÞ ¼
1

4pjx� yj
d t� t�

jx� yj

co

� �
, (21)

which determines solution (10) of Eq. (6) (i.e. of the low Mach number form of Eq. (3)) when the flow is
unbounded, when X and Y reduce, respectively, to x and y. However, in applications it is necessary to expand
Eq. (20) correctly to dipole order to furnish explicit predictions. By taking the origin O within S, the source
point y near S and the observation point x in the acoustic far field where jXj � jxjbjYj, we accordingly obtain
the expansion of Eq. (20) to be

Gðx; y; t; tÞ �
1

4pjxj
d t� t�

jxj

co

� �
þ

xiY i

4pcojxj
2
d0 t� t�

jxj

co

� �
; jxj ! 1, (22)

where the prime denotes differentiation with respect to t. The first term in this formula does not depend on the
source position y, and determines the monopole component of sound; the second represents the dipole.
The question of which of these terms dominates the far field depends on the properties of the source terms in
the integrands of Eq. (19).

Thus, when expansion (22) is used in Eq. (19) (wherein r is replaced by the low Mach number
approximation ro), the result can be cast in the form

pðx; tÞ �
ro

4pjxj
q
qt

I
S

v � dS

� �
þ

roxi

4pcojxj
2

q
qt

q
qt

I
S

Y iv � dS�

I
S

DY i

Dt
v � dS

� �

�
roxi

4pcojxj
2

q
qt

Z
x ^ v � rY i d

3y� n
I

S

x ^ rY i � dSðyÞ

� �
; jxj ! 1, (23)

where n ¼ Z=ro. Here we adopt the convention that quantities in square braces ½ � are evaluated at the retarded
time t� jxj=co.

This approximation is correct to dipole order in a multipole expansion of the far field. The first term on the
right represents omnidirectional monopole radiation produced by volumetric pulsations of the body S. The
remaining terms are dipoles and are nominally smaller by a factor �OðMÞ, but they become the dominant part
of the acoustic field when the volume of the deforming solid is either constant or changes by only a small
amount. Those surface dipoles involving v � dS arise from translational, rotational and deformations in the
shape of S. The volume integral of x ^ v � rY i corresponds to the result given previously in Eq. (13) for a
stationary, compact body; the final term is the contribution from surface frictional dipoles.

3.2. Rigid body in translational motion

The Kirchhoff vector Y evaluated on the surface S of a rigid body of volume D is independent of the time
when S is in translational motion at velocity UðtÞ, say (M ¼ U=co51). Then Eq. (23) reduces to

pðx; tÞ �
roxi

4pcojxj
2

q
qt

I
S

qUn

qt
Y i dS �

Z
ðx ^ vÞ � rY i d

3yþ n
I

S

x ^ rY i � dS

� �
; jxj ! 1, (24)

where Un ¼ U � n is the normal component of velocity on S (Fig. 4).
Now

ro

I
S

qUn

qt
Y i dS ¼ ro

dUj

dt

I
S

ðnjyi � njj	i ÞdS ¼ ðmodij þMijÞ
dUi

dt
,

where mo ¼ roD is the mass of fluid displaced by the body, and Mij ¼Mji ¼ �ro

H
S
nij	j dS is the added mass

tensor of the body [6,7].
Therefore, Eq. (24) becomes the dipole radiation field

pðx; tÞ �
xi

4pcojxj
2

dF i

dt
þmo

d2Ui

dt2

� �
; jxj ! 1, (25)
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Fig. 4. Compact rigid body in translational accelerated motion.
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where

F i ¼Mij

dUj

dt
� ro

Z
V

x ^ v � rY i d
3yþ Z

I
S

x ^ rY i � dS (26)

is the unsteady force exerted on the fluid by the body [6,7].
The result (25) was first obtained by Curle [12] from Lighthill’s equation. The force formula (26) gives

separate contributions to the unsteady force. The first term, involving the added mass, is independent of the
presence of vorticity and depends only on the accelerated motion of S. The contribution from the volume
integral containing the Lamb vector x ^ v corresponds to that already given in Eq. (13) for a stationary rigid
body, which is the leading vortex source term at high Reynolds numbers, when the final surface integral in
Eq. (26) (which involves the contribution to the force from viscous-induced tangential and normal stresses
on S) is negligible.

3.3. Sound produced by a disk of time-dependent radius — Coanda edge-force radiation

Consider a rigid disk of infinitesimal thickness of variable radius a ¼ aðtÞ placed broadside-on to a uniform,
low Mach number mean stream of constant speed U. Dipole sound will be produced by vortex shedding from
the disk, but there is no contribution from volumetric or translational motions, both of which are absent.
However, the mechanism of sound production shares many similarities with that of voiced speech considered
later. Let us examine the influence of the variable radius on sound generation by confining attention to the
case of an ideal fluid where vortex shedding does not occur and the mean flow is irrotational.

Take the coordinate origin at the fixed centre of the disk, with the x1 axis normal to the disk and in the
direction of the mean flow (Fig. 5). The velocity of the mean flow is UrX 1ðx; tÞ, where X 1 is the x1 component
of the Kirchhoff vector, which is defined relative to the coordinates of Fig. 5 by

X 1 ¼ x1 þ
2a sgnðx1Þ

p

Z 1
0

sinðxaÞ

xa
� cosðxaÞ

� �
e�xjx1jJ0ðxrÞdx

x
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
2 þ x2

3

q
,

X 2 ¼ x2; X 3 ¼ x3, (27)

where a ¼ aðtÞ and J0 is a Bessel function of order zero.
Provided the frequency of the changes in the radius are such that the disk is acoustically compact, we can

use the general formula (23) to calculate the sound produced by the variations in disk radius. The volume of
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Fig. 5. Generation of sound by a disk of variable radius aðtÞ placed broadside-on to a uniform, irrotational mean flow.
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the disk always vanishes, x ¼ 0, and the motion is inviscid. Therefore only the first two surface integrals in the
dipole term of Eq. (23) can possibly contribute to sound. But the normal component of velocity vanishes on
the front and back faces of the disk (where v � dS � 0). This implies that any nontrivial contribution to the
integrals can only arise because of the known singular behaviour of the potential flow velocity at the edge of
the disk, which produces the suction force required to turn the flow around the sharp corner — a ‘Coanda
effect’. It is the rate of working of the unsteady part of this Coanda edge force that is responsible for the
generation of sound.

Near the edge of the disk, Eq. (27) implies that

Y 1�
2
ffiffiffiffiffi
2a
p

p
Reðeip=4

ffiffiffiffiffiffiffiffiffiffiffiffi
z� ia
p

Þ; z�ia; z ¼ y1 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2
2 þ y2

3

q
, (28)

so that ðrY 1Þ
2
�Oð1=jz� iajÞ near the edge. It follows that any sound produced by edge effects must be given

by the following component of Eq. (23):

pðx; tÞ � �
roxi

4pcojxj
2

q
qt

I
S

DY i

Dt
v � dS

� �
¼ �

rox1

4pcojxj
2

q
qt

I
S

UðrY 1Þ
2v � dS

� �
. (29)

The entire contribution to the last integral is from the neighbourhood of the edge, where the normal
component of velocity is v � n ¼ _aðtÞ ¼ da=dt. It can be evaluated using the limiting behaviour (28) by the
method described by Batchelor [25, Eq. 6.5.4] for calculating suction force at a sharp edge, which yields

pðx; tÞ � �
2roM cos y

3pjxj
d2

dt2
ða3Þ

� �
t�jxj=co

; jxj ! 1, (30)

where y is the angle shown in Fig. 5 between the radiation direction and the positive x1-axis. This is a
characteristic dipole field whose amplitude and frequency are determined by the time rate of change of the disk
radius. The dipole axis is in the mean flow direction, and in fact the dipole strength, is just equal to the
amplitude of the unsteady drag force experienced by the disk because of the changes in radius. Observe that
there is no requirement that the overall amplitude of the radial variations should be small, although the
frequency should be small enough to ensure that the disk remains acoustically compact.
3.4. Influence of induced vortex shedding: the Kutta condition

In a typical low Mach number, turbulence–structure interaction a coherent region of vorticity (a ‘gust’) is
swept past a stationary body S in a nominally steady flow. The ‘no-slip’ condition on S results in the release of
additional vorticity into a turbulent wake. For the example in Fig. 6 of a thin rectangular airfoil, the vorticity
is shed into a thin wake from the trailing edge. In an approximation where viscosity is neglected, the strength
of the shed vorticity is determined by the Kutta condition that potential flow singularities in the velocity and
pressure at the edge should be absent [26].
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Fig. 6. Sound generation by a vortex ring interacting with an airfoil, including the contribution from the induced vortex wake shed from

the trailing edge.
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At high Reynolds number the surface force (26) responsible for the sound reduces to

Fi ¼ �ro

Z
V

ðx ^ vÞðy; tÞ � rY iðyÞd
3y, (31)

where rY i represents the velocity of an ideal flow past the airfoil that has unit speed in the i-direction at large
distances from the airfoil. It is singular (or very large) at the edges of the airfoil. These singularities have the
following significance: when the vorticity length scale is small compared to the airfoil chord, the principal
contribution to the integral is from vorticity in the neighbourhoods of the singularities. Thus for the airfoil of Fig. 6

ðY 1; Y 2; Y 3Þ ¼ ðy1; Ref�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

g; y3Þ; z ¼ y1 þ iy2,

where rY 2 is infinite at the leading and trailing edges z ¼ �a. A small-scale gust convecting past the airfoil in the
y1-direction at speed U induces vortex shedding from the trailing edge z ¼ a. When this shedding is ignored, the
force calculated from (31) has two principal components, namely from gust elements near the leading and trailing
edges. To calculate the overall force, however, it is necessary to include the contribution from the shed vorticity,
which affects the motion only near the trailing edge when the length scale of the wake vorticity is small. In a
linearized treatment of this problem [7,27], when the gust and wake vorticity are both assumed to convect at the
same mean velocity, it is known from unsteady aerodynamics that the force component produced by the wake is
equal and opposite to that generated by the gust at the trailing edge.

The effect of this cancellation on sound can be approximated without calculating any details of shed
vorticity, by formally deleting the trailing edge singularity from rY 2 and ignoring the contribution to the
integral (31) from shed vorticity. This is because the value of the integral is dominated by vorticity near the
edges, and only the behaviours of Y 2 near these edges must be retained in the integrand; Y 2 can therefore be
replaced by the leading-order terms in its expansions about the edges. For the airfoil of Fig. 6 one writes

Y 2 ¼ Reð�i
ffiffiffiffiffiffiffiffiffiffiffi
z� a
p ffiffiffiffiffiffiffiffiffiffiffi

zþ a
p

Þ�Reð
ffiffiffiffiffi
2a
p ffiffiffiffiffiffiffiffiffiffiffi

zþ a
p

Þ þReð�i
ffiffiffiffiffi
2a
p ffiffiffiffiffiffiffiffiffiffiffi

z� a
p

Þ. (32)

The last term is singular at the trailing edge. The Kutta condition is imposed by deleting this term, ignoring the
wake vorticity and using the following approximation in Eq. (31):

Y 2�Reð
ffiffiffiffiffi
2a
p ffiffiffiffiffiffiffiffiffiffiffi

zþ a
p

Þ, (33)

where the branch cut for
ffiffiffiffiffiffiffiffiffiffiffi
zþ a
p

is taken along the real axis from z ¼ �a to þ1.
To illustrate this, consider an idealized gust in the form of a vortex ring of circulation G, radius R5a and of

infinitesimal core. Let the ring be orientated with its normal in the x1-direction and translate at approximately
constant speed U parallel to the airfoil at distance h40 above the airfoil, such that its centre is at ðUt; h; 0Þ
at time t. If we also assume that R5h, the gust noise source is equivalent to the quadrupole
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Fig. 7. Nondimensional acoustic pressure (——)

pðx; tÞ
R
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� �2
,

roU2G cosY
cojxj

produced by the vortex ring of Fig. 6 when the Kutta condition is imposed and h=a ¼ 0:25; � � � pressure in the absence of vortex

shedding.
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divðx ^ vÞ � q=qxaðx ^ vÞa, where the repeated suffix a is summed over a ¼ 2, 3 only, and

ðx ^ vÞa ¼ �pR2GU
q
qxa
ðdðx1 �UtÞdðx2 � hÞdðx3ÞÞ.

Then Eq. (23) yields, when the Kutta condition is applied at the trailing edge,

pðx; tÞ � �
ro cosY
4pcojxj

q
qt

Z
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qY 2
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� �

� �
ro

ffiffiffiffiffi
2a
p

cosY
4pcojxj

q
qt

Z
ðx ^ vÞa

q
qya

Reð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1

U ½t�
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þ 1þ
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� �5=2

8>>><
>>>:

9>>>=
>>>;
; jxj ! 1, (34)

where Y is the angle between the radiation direction x and the normal to the airfoil (Fig. 6).
The radiation has the characteristic dipole directivity of a compact vortex–surface interaction, the dipole

axis being normal to the airfoil, and its magnitude being proportional to the unsteady lift produced by the
passing vortex. The pressure signature (34) is plotted as the solid curve of Fig. 7 for the case h=a ¼ 0:25. The
broken line curve is the pressure field generated by the vortex ring near the trailing edge when the Kutta
condition is not imposed; this is equal and opposite to the pressure radiated by the wake vorticity.

4. Voiced speech

4.1. Theoretical model

Voiced speech is produced by oscillations of the vocal folds subjected to a nominally steady ‘subglottal’
pressure from the lungs. Periodic shedding from the ‘tips’ of the folds and feedback from convecting vorticity
produce self-sustaining oscillations of the folds at frequencies f o, typically �100–200Hz for adult speakers
[28–30]. In all such cases the glottis (the opening of variable width between the folds) is acoustically compact.
An idealized representation (adapted from Ref. [31]) of the fold motion during a complete cycle is shown in
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Fig. 8. Illustrating the variations in the geometry of the vocal folds over one cycle at intervals of 1
6
of a period according to the model of

Zhao et al. [31].
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Fig. 8. In the simplest approximation, the glottis has a rectangular cross-section of span ‘3 (out of the plane of
the paper in Fig. 8) and a continuously variable width Dðx1; tÞ, where the origin is at the nominal centroid of
the glottis at O with x1 measured axially with respect to the vocal tract (see Fig. 8d). To obtain a mathematical
model of the mechanism of sound production, the vocal tract near the glottis will be treated as a rigid-walled,
rectangular duct of span ‘3 and height 2h.

Voicing is typically initiated with the glottis tightly closed and subject to a subglottal over-pressure of about
10cm of water (�1 kPa), which blows the folds apart. This is modelled theoretically by the arrival of a step
pressure rise from the lungs (from the left in Fig. 8), causing the folds to separate and opening the glottis, initially
forming a converging channel as indicated in Fig. 8b. The subsequent ‘rocking’ motion illustrated in Figs. 8c–f is
attributed to structural waves moving over the surfaces (‘epithelia’) of the folds [30]. A constant applied over-
pressure causes the sequence of configurations in Fig. 8 to repeat periodically. The actual variation of Dðx1; tÞ is
determined by the simultaneous solution of equations of motion for the fluid and for the elastic vocal folds.

Let the over-pressure from the lungs consist of a step rise in pressure of amplitude pI arriving at the glottis
at t ¼ 0 as the incident wave BI ¼ ðpI=roÞHðt� x1=coÞ. Then B ¼ BI þ Bs, where Bs ¼ ps=ro is ‘scattered’
from the glottis with outgoing wave behaviour. A simple modification of the argument leading to Eq. (19) then
supplies the acoustic pressure in the form

p

ro

¼
pI

ro

H t�
x1

co

� �
�

Z
V

ðx ^ vÞjðy; tÞ
qG

qyj

ðx; y; t; tÞd3ydt

þ n
I

S

xðy; tÞ ^
qG

qy
ðx; y; t; tÞ � dSðyÞdtþ

I
S

Gðx; y; t; tÞ
qvj

qt
þ

qBI

qyj

 !
ðy; tÞdSjðyÞdt. (35)
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The compact Green’s function for this problem of sound generation in a uniform duct, when the source
point at y is in the vicinity of a deformable contraction (the glottis), can be cast in the form [32]

Gðx; y; t; tÞ �
co

2A
Hð½t� � tÞ þ

co sgnðx1ÞY 1ðy; tÞ
‘ð½t�ÞA

Hð½t� � tÞ e�
R ½t�
t

2co dx=‘ðxÞ; y�OðhÞ, (36)

where ½t� ¼ t� jx1j=co is the retarded time, A ¼ 2h‘3 is the cross-sectional area of the duct and Y 1ðy; tÞ is the
one-dimensional Kirchhoff vector defined by the potential of flow through the glottis with vanishing normal
derivative on the sidewalls. This approximation ignores reflections of sound waves from the distant extremities
of the vocal tract, and therefore is limited in its use to the determination of the acoustic field immediately after
its generation at the glottis. The length ‘ ¼ ‘ðtÞ is an ‘end-correction’ defined by

‘ðtÞ ¼

Z 1
�1

qY 1

qy1

ðy; tÞ � 1

� �
dy1, (37)

where the integration is along any path parallel to the duct axis passing through the contraction, and Y 1 can
be normalized such that

Y 1�y1 

‘ðtÞ

2
; y1 !
1. (38)

The end-correction ‘ typically exceeds the duct width 2h, and becomes very large when the minimum
distance between the opposite walls of the contraction is small. Its variation over a complete cycle 0oto1=f 0

is illustrated in Fig. 9 for the case where the minimum and maximum widths of the glottis are, respectively,
equal to 0.5% and 20% of the duct width 2h. The exponential function in the second term of Eq. (36)
decreases rapidly when the acoustic travel distance coð½t� � tÞ exceeds ‘, which provides a time scale for
acoustically compact transients. In many applications, however, transients are unimportant because a typical
compact source near the contraction does not change over times �‘=co, and we can then use the more usual
approximation

Gðx; y; t; tÞ �
co

2A
H t� t�

jX 1 � Y 1j

co

� �
. (39)

4.2. Vortex sound

Irrotational, transient motions dominate the sound radiated from the glottis immediately after the arrival of
the step wave, and are governed by the contribution from qBI=qyj in Eq. (35). These integrals in Eq. (35)
involving vorticity and surface accelerations are initially small because, for example, vorticity must first be
convected into the flow after shedding from the folds by the low Mach number glottal flow. At later times the
Fig. 9. Variation of the end-correction ‘ðtÞ during periodic motion of the model glottis of Fig. 8 when the minimum and maximum widths

of the glottis (corresponding to Figs. 8a, d) are, respectively, 0.5% and 20% of the duct width 2h.
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Fig. 10. Glottal jet modelled as a quasi-static free-streamline flow with asymptotic jet speed Us at stage (c) of Fig. 8. The majority of

the ‘streamlines’ of Green’s function velocity potential Y 1ðx; tÞ cut the jet boundary typically within a distance downstream of the glottis of

the order of the glottal width.
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flow just downstream of the glottis forms a jet of rectangular cross-section and span ‘3 whose width is
modulated by the varying width of the glottis (Fig. 10). The jet is unstable and further downstream the flow
becomes turbulent, but is sufficiently far from the glottis that the efficiency of sound production by
the turbulence is negligible. Indeed, the vortex sound Bo ¼ po=ro, say, is determined by the first integral of
Eq. (35) in the form

po

ro

¼ �

Z
ðx ^ vÞjðy; tÞ

qG

qyj

ðx; y; t; tÞd3ydt

� �
co sgnðx1Þ

A‘ð½t�Þ

Z ½t�
�1

e
�
R ½t�
t

2co dx=‘ðxÞ dt
Z

qY 1

qy
� x ^ v

� �
ðy; tÞd3y. (40)

In Fig. 10 the jet and streamline patterns of the ‘flow’ defined by the velocity potential Y 1 are shown at stage
(c) of Fig. 8. Sound is generated strongly (with dipole strength) in regions where the streamline pattern of Y 1

varies rapidly, on scales comparable to those of the vortex field. This occurs close to the glottis within a
distance � the glottal width — further downstream the streamlines are uniformly spaced, parallel and rY 1

varies very slowly, and the integration in Eq. (40) can then be evaluated by holding qY 1=qy constant over the
region occupied by a coherent eddy, in which case

R
x ^ vd3y ¼ 0 when the eddy is compact: under these

circumstances the sound generated by the eddy is that of a weak quadrupole.
Fig. 10 also illustrates the consequence of the high Reynolds number hypothesis that vorticity shed from the

glottis is initially confined to ‘free streamlines’ at the edges of the jet. From what has been said above, it is only
necessary for this approximation to be adequate within a distance of about one glottal width downstream,
where Green’s function streamlines of the potential Y 1 cut across the jet boundary. On this boundary the flow
speed is constant and equal to Us, say, the asymptotic jet velocity predicted by the free-streamline theory
[33,34]. Thus, for example, along the upper free streamline of Fig. 10 the vorticity x ¼ Usdðs?Þk, where s? is
the distance measured in the direction of the outward normal from the free streamline and k is a unit vector
out of the plane of the paper; the vorticity convection velocity v ¼ 1

2 Ust, where t is a unit vector tangential to
the free-streamline flow. Hence, because k ^ t is the unit normal directed outwards from the jet, the
contributions from both edges of the jet can be combined to yieldZ

qY 1

qy
� x ^ v

� �
ðy; tÞd3y ¼ ‘3U2

sðtÞ
Z 1
0

qY 1

qs?

� �
s?¼0

ds,
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where s is the distance measured along a free streamline from the glottis. Now 2‘3
R1
0 ðqY 1=qs?Þs?¼0 ds ¼A,

provided the asymptotic jet width is small compared to the width 2h of the vocal tract. Therefore the vortex
sound formula (40) becomes

po

ro

� �
co sgnðx1Þ

2‘ð½t�Þ

Z ½t�
�1

U2
sðtÞe

�
R ½t�
t

2co dx=‘ðxÞ dt. (41)
4.3. Solution of the scattering problem

The remaining integrals in Eq. (35) include the contribution from the incident step wave (the term in
qBI=qyj), which is readily evaluated in the form

�
pI

ro

sgnðx1Þ

‘ð½t�Þ

Z ½t�
�1

q
qt
ðHðtÞ‘ðtÞÞe�

R ½t�
t

2co dx=‘ðxÞ dt,

and represents a transient response to the incident step rise in pressure. It decays rapidly to zero after a
retarded time �‘=co, where ‘ is the characteristic value of the glottis end-correction following its impulsive
opening.

In addition, there are contributions from the frictional, viscous drag in the glottis and from the cyclic
variations in the volume of the vocal folds. The viscous term will be neglected — it is significant only when
D! 0, but it can still be ignored because the end-correction ‘!1 as the glottis closes, causing the overall
radiation to drop to zero. The periodic changes in vocal fold volume give rise to a small monopole component
pm of the pressure that radiates equal waveforms in both directions away from the glottis:

pm

ro

� �
co‘3
2A

q
qt

Z 1
�1

D y1; t�
jx1j

co

� �
dy1. (42)

Hence, combining these pressures with the vortex sound component (41) the solution (35) becomes

pðx1; tÞ ¼ pI H t�
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� �
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q
qt

Z 1
�1

Dðy1; ½t�Þdy1,

where ½t� ¼ t�
jx1j

co

. (43)

4.4. The voiced pressure signature

The monopole contribution (42) to the radiated sound (43) is readily evaluated when the time dependence of
the vocal fold shape function is known. Denote the remaining pressure in Eq. (43) by

p0ðx1; tÞ ¼ pI H t�
x1

co

� �
�

sgnðx1Þ

‘ð½t�Þ

Z ½t�
�1

q
qt
ðHðtÞ‘ðtÞÞe�
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t

2co dx=‘ðxÞ dt
� �

�
roco sgnðx1Þ

2‘ð½t�Þ

Z ½t�
�1

U2
sðtÞ e

�
R ½t�
t

2co dx=‘ðxÞ dt. (44)

For x140 the acoustic particle velocity of this outgoing wave has the limiting value UðtÞ ¼

limx1!þ0 p0ðx1; tÞ=roco just to the right of the glottis in Fig. 8 (i.e. where x1�þ 0 so that ½t� ! t). By
differentiating the corresponding limit of Eq. (44) we find that U satisfies the differential equation

dð‘UÞ

dt
þ 2coU þ

1

2
U2

s ¼
2pI

ro

HðtÞ. (45)
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If s is the contraction ratio of the glottal jet, then by continuity sUsDm ¼ 2hU , where DmðtÞ is the minimum
width of the glottis at time t, and Eq. (45) becomes

dð‘UÞ

dt
þ 2coU þ 2

h

sDmðtÞ

� �2

U2 ¼
2pI

ro

HðtÞ. (46)

This equation is equivalent to the nonlinear ‘lumped-parameter’ approximation used to study voicing by Fant
[28] and Flanagan [29], where the vocal tract is modelled as an electrical transmission line with a ‘monopole’
source of strength Q � UA at the glottis. The monopole interpretation of the source of voiced speech is
obviously incorrect, but it does provide a convenient working model that is often useful. The predominantly
dipole character of voiced sounds was established by the numerical work of Zhao et al. [31], who showed that
the principal source is the fluctuating surface pressures on the vocal folds.

The causal solution of Eq. (46) completely determines the acoustic pressure from the formulae

pðx1; tÞ ¼ rocoU t�
x1

co

� �
�
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2A

q
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�1

D y1; t�
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� �
dy1; x1 !þ1 (47a)
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� �� �
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q
qt

Z 1
�1

D y1; tþ
x1

co

� �
dy1; x1!�1.

(47b)

The first three cycles of the pressure wave radiated towards the mouth (x140) calculated from Eq. (47a) by
numerical integration of Eq. (46) is illustrated in Fig. 11 when the incident step pressure pI ¼ 8 cm of water
(�0:8 kPa). It is assumed that co ¼ 340m=s, ro ¼ 1:23 kg=m3, and the simplest approximation has been
adopted in which the jet contraction ratio s ¼ 1. The frequency f o ¼ 125Hz, which is typical of an adult male;
in one complete cycle the vocal folds are assumed to pass through the stages shown in Fig. 8 with h ¼ 10mm,
when the minimum glottal width of Fig. 8a is Dmin ¼ 0:1mm and the maximum (Fig. 8d) is Dmax ¼ 4mm.
Fig. 11 shows the overall predicted waveform (——), a series of positive pulses, and also shows the separate
contributions (- - - -) from the vortex sound term rocoU of Eq. (47a) (superimposed on the mean transmitted
pressure of amplitude pI ) and monopole (42).

It is seen that the rapid transient build-up of the transmitted sound to its periodic form occupies a small
fraction of a cycle. The shape of the transient is controlled by the first term on the left of Eq. (46). When this is
discarded the equation yields the quasi-static approximation

UðtÞ ¼
co

2

sDmðtÞ

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
�

sDmðtÞ

h

0
@

1
A; t40. (48)
Fig. 11. The first three cycles of the pressure (47a) (——) radiated from the glottis towards the mouth (x140) when f 0 ¼ 125Hz,

pI ¼ 8 cm of water, Dmin ¼ 0:1mm. Also shown (- - - -) are the separate contributions from the vortex sound superimposed on the mean

transmitted pressure pI , and the monopole sound (42). The dotted curve (� � �) is the quasi-static approximation (48).
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Fig. 12. The quasi-static approximation to the pressure (48) (——) radiated from the glottis towards the mouth (x140) when f 0 ¼ 125Hz,

pI ¼ 8 cm of water, but when the glottis is closed during the first 30% of each cycle, producing a succession of pressure pulses separated by

short intervals of ‘silence’.
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The prediction of sound using this formula in Eq. (47a) is plotted as the dotted curve (� � �) in Fig. 11.
Evidently the neglect of the ‘inductive’ term in Eq. (46) results in a prediction that lacks an initial transient but
is otherwise a very close approximation to the full predicted acoustic pressure. The dominant influence of the
variable end-correction ‘ðtÞ is confined to the very initial phases of sound generation. The monopole
contribution alternates in sign as the folds expand and contract and furnishes a small correction to the overall
wave profile. Although the amplitude of this source would be expected to increase with frequency, it actually
appears that structural changes in the vocal folds at higher frequencies tend to oppose this increase [30].

The transmitted pressure remains positive and always exceeds about 0:1pI , because it has been assumed that
the glottis does not close completely. In voiced speech the periodic motions of the vocal folds usually include
intervals in which the glottis is closed. This is easily included in the quasi-static approximation, whereas the
corresponding change in the connectivity of the three-dimensional space forming the vocal tract would require
special treatment of the full Eq. (46), involving a limiting process in which ‘=h!1.

Fig. 12 depicts an example where Dmin ¼ 0 and the glottis is closed for 30% of each cycle and varies as in
Fig. 8 during the remainder of the cycle (again for f 0 ¼ 125Hz and pI ¼ 8 cm of water). Successive pressure
pulses are now separated by short intervals of ‘silence’. The maximum amplitude of the vortex sound is
unchanged from that shown in Fig. 11 because the net variation in the glottal area is the same; however, the
contribution from the monopole is increased because the volumetric changes of the folds occur more rapidly.

5. Noncompact sources — the high-speed train

A high-speed train entering a tunnel at speed U compresses the air in front, causing most of it to flow over
the train and out of the tunnel portal. The pressure rise propagates ahead of the train into the tunnel at the
speed of sound as a compression wave whose amplitude �1–3% of atmospheric pressure when the train Mach
number M ¼ U=co exceeds about 0.2 (Fig. 13). The initial shape of the wavefront depends on the geometries
of the tunnel portal and train nose, and on the ‘blockage’ ¼Ao=A, where Ao and A are, respectively, the
cross-sectional areas of the train and tunnel (see [20] and references cited therein). The reflection of the
compression wave from the distant tunnel exit is accompanied by the emission from the tunnel of a pressure
pulse called the micro-pressure wave (Fig. 13), whose strength is proportional to the steepness of the
compression wavefront at the exit. For tunnels longer than about 3 km with ‘acoustically smooth’ concrete
slab tracks, nonlinear steepening of the compression wave in the tunnel can cause the micro-pressure wave
amplitude to be comparable to the sonic boom overpressure from a supersonic aircraft, and strong enough to
rattle windows and fittings in neighbouring dwellings.

One method of suppressing the micro-pressure wave involves judicious modifications of the train nose
profile and tunnel portal that increase the initial thickness of the wavefront and delay the onset of nonlinear
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Fig. 13. The compression wave, micro-pressure wave and infrasound generated by a high-speed train entering a tunnel.

Fig. 14. Schematic scale model experiment involving a train entering an axisymmetric cylindrical tunnel fitted with a tunnel entrance hood

with windows.
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steepening [35]. Large increases in thickness are achieved by installing a tunnel entrance ‘hood’ extending up to
50m out from the tunnel portal. The compression wave begins to form as the train enters the hood: wave
thickness increases are obtained by the temporary trapping of wave energy within the hood by multiple
reflections from its ends, and by the venting of high-pressure air through ‘windows’ in the hood walls. The
optimization of the hood design is usually based on scale-model testing involving a ‘tunnel’ consisting of a
thin-walled, circular cylindrical tube (of radius R�50mm), and axisymmetric ‘trains’ projected at high speed
into the hood (of radius RhXR, Fig. 14). The Reynolds number is large enough for the initial interactions of
the train and tunnel to be regarded as inviscid, so that model scale experiments should provide a faithful
representation of full-scale results, provided the Mach number and relative geometrical sizes of the tunnel and
train are the same.
5.1. Basic source mechanism

Coordinates x ¼ ðx; y; zÞ are taken with the origin O on the axis of symmetry at the hood entrance (Fig. 15).
An axisymmetric model scale ‘train’ is projected into the hood along a guide-wire aligned with the tunnel axis
and the compression wave is measured in the tunnel about one metre from the junction of the tunnel and the
hood. The circular cross-section of the train becomes uniform with radius h and area Ao ¼ ph2 at a distance
L from the train nose.

The production of the compression wave is governed by the vortex sound equation (15). But now there are
two important surfaces, the fixed interior and exterior tunnel walls and that of the moving train. For practical
purposes it is convenient to use a Green’s function having vanishing normal derivative only on the tunnel
surface. The effect of the moving train is then contained in the terms

rrH �
qv
qt
� r � ðrBrHÞ (49)
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Fig. 15. Experimental hood, tunnel and axisymmetric train: (a) ‘side’ view from the direction of the positive z-axis; (b) ‘top’ view from the

direction of the positive y-axis.
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on the right of Eq. (15), which, respectively, correspond to monopole and dipole sources distributed on the
surface of the moving train. The remaining source terms, involving the vorticity, are discussed below.

The monopoles account for the massive displacement of the air ahead of the advancing train. Their
interaction with a hood, tunnel or other neighbouring structure produces a pressure excess over the nose of the
train (i.e. a drag force) that is acoustically equivalent to a distribution of dipoles. Because the blockage Ao=A
is always small (p0:2, where A ¼ pR2 ¼ area of the uniform section of the tunnel), the monopole and dipole
sources (49) can be replaced by the following slender body approximation [36]:

U 1þ
Ao

A

� �
q
qt

qAT

qx
ðxþUtÞdðyÞdðz� ztÞ

� �
, (50)

where AT ðsÞ is the cross-sectional area of the train at distance s from the tip of the nose, which is assumed to
enter the hood (x ¼ 0) at time t ¼ 0 travelling along a guide-wire displaced a distance z ¼ zt from the tunnel
axis. The approximation replaces the surface monopoles and dipoles by a line source on the train axis over the
interval of variable train cross-section. The term in Eq. (50) involving the factor Ao=A represents the
contribution from the drag dipole.
5.2. The compact approximation

In the absence of a hood (Rh ¼ R and no windows in Fig. 15) the experimental train enters a uniform
circular cylindrical tube. The train nose interacts with the portal over a time �R=U during which the
compression wavefront is completely formed with thickness �R=MbR for typical train Mach numbers
M�0:3 (370 km/h). We can therefore use the following compact approximation to Green’s function [37]:

Gðx; y; t; tÞ �
co

2A
H t� t�

jj	EðxÞ � j	EðyÞj
co

� �
�H t� tþ

j	EðxÞ þ j	EðyÞ
co

� �� �
, (51)

where j	EðxÞ is the velocity potential of a hypothetical incompressible flow out of the tunnel portal normalized
such that

j	EðxÞ�
x� ‘E as x!�1 inside the tunnel,

�A=4pjxj as jxj ! 1 outside the tunnel.

(
(52)
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Fig. 16. (a) Streamline pattern of the velocity potential j	E ðxÞ defining flow from a circular cylindrical portal. (b) Measured (4) and

predicted compression wave in the absence of a hood and windows, for the model scale ellipsoidal nose train defined by Eqs. (57) and (58)

and a circular cylindrical tunnel of radius R ¼ 50mm at U ¼ 349km=h when zt ¼ 0. The main pressure rise is determined by pE of

Eq. (53). The linearly increasing ‘tail’ is governed by the turbulence-generated pressure pD.
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The explicit functional form of j	EðxÞ is given in Ref. [37] for a circular cylindrical portal (and the
corresponding pattern of streamlines is shown in Fig. 16a), but the compact approximation (with the
appropriate j	EðxÞ) is applicable for any tunnel whose interior cross-sectional area is ultimately constant and
equal to A. The length ‘E is an ‘end-correction’ determined by the shape of the portal.

Thus ahead of the train within the tunnel where B ¼ p=ro, slender body approximation (50) supplies the
compression wave in the form

pEðx; tÞ � roU 1þ
Ao

A

� �
q
qt

ZZ 1
�1

qAT

qx0
ðx0 þUtÞGðx; ðx0; 0; ztÞ; t; tÞdx0 dt

�
roU2

Að1�M2Þ
1þ

Ao

A

� �Z 1
�1

qAT

qx0
ðx0 þU ½t�Þ

qj	E
qx0
ðx0; 0; ztÞdx0, (53)

where ½t� ¼ tþ ðx� ‘EÞ=co is the effective retarded time, and the subscript ‘E’ on pE signifies the component of
the overall compression wave pressure attributable to the interaction of the train nose with the portal alone.
Because nonlinear propagation terms have been ignored, this approximation determines the initial form of the
compression wave before the onset of nonlinear steepening. It is therefore applicable within the region several
tunnel diameters ahead of the train, during and just after tunnel entry.

To illustrate the roles played by the various terms in the integrand of Eq. (53), consider the limiting case of a
‘snub-nosed’ train whose nose length L! 0, for which AT ðsÞ ¼AoHðsÞ, so that the source distribution (50)
representing the train nose collapses to a point source with

qAT

qx0
ðx0 þU ½t�Þ ¼Aodðx0 þU ½t�Þ. (54)

Then Eq. (53) gives

pEðx; tÞ �
roU2

ð1�M2Þ

Ao

A
1þ

Ao

A

� �
qj	E
qx0
ð�U ½t�; 0; ztÞ, (55)

which shows that in this limiting case the compression wave profile is an exact image of the axial component of
the potential flow velocity qj	E=qx along the track of the train. The rapid expansion of the streamline pattern
outside the portal (Fig. 16a) indicates that this velocity is very small before the nose enters the tunnel
(�A=4px2 when x4R), but rises quickly and smoothly to qj	E=qx ¼ 1 when xo� R within the tunnel. The
rate of increase of pressure across the wavefront is strongly dependent on the relative track offset zt=R,
becoming increasingly fast as zt increases from zero when the path of the train traverses the rapidly varying
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streamline pattern near the edge of the portal. Evidently, the pressure profile for a train nose of finite length
will correspond to a ‘smeared’ image of qj	E=qx along the path of the train.

Eq. (55) shows that the overall pressure rise DpE across the wavefront is

DpE ¼
roU2

ð1�M2Þ

Ao

A
1þ

Ao

A

� �
. (56)

Actually, this result does not depend on the shape of the train nose because, after the nose has passed into the
tunnel, qj	E=qx0 ¼ 1 in the region occupied by the nose, and the right-hand side of Eq. (53) reduces exactly to
this formula.

Fig. 16b depicts the measured compression wave profile (4 4 4) for a typical laboratory scale test for this
case of a tunnel without a hood. The experiment was performed at the Railway Technical Research Institute
(RTRI) in Tokyo [20] using apparatus described in Ref. [38]. The tunnel consisted of a 6.5m-long, thin-walled,
circular cylindrical tube of internal radius R ¼ 50mm. The model axisymmetric ‘train’ had an ellipsoidal nose
shape defined by

r ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

L
2�

x

L

	 
r
; 0oxoL ðr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
Þ, (57)

so that (ignoring the rear end of the train)

AT ðsÞ

Ao

¼

s

L
2�

s

L

	 

; 0osoL;

1; s4L;

8<
: (58)

where h ¼ 22:35mm, L ¼ 67:05mm and Ao=A ¼ 0:2. The tail of the train had an identical ellipsoidal shape,
and its overall length was 1239mm.

The train was projected into the tunnel at U ¼ 349 km=h (M ¼ 0:285) along the tunnel axis. The front of
the nose crosses the entrance plane of the tunnel at t ¼ 0, and the pressure wave was measured within the
tunnel at a distance ‘m ¼ 1:5m from the entrance. In the figure the pressure at x ¼ �‘m is plotted against
U ½t�=R, where ½t� ¼ t� ‘m=co is the retarded time. The pressure rise begins just before the nose enters the
tunnel at U ½t�=R ¼ 0. The calculated pressure rise pE generated by the interaction of the nose with the tunnel
entrance is seen to agree with the principal characteristics of the measured wavefront, but assumes the
constant value given by Eq. (56) for U ½t�=R42. The subsequent linear increase in the measured pressure is
caused by the frictional drag on the train and tunnel walls, and will be discussed below.
5.3. Influence of aerodynamic drag

The principal interactions that contribute to compression wave formation are illustrated in Fig. 17 for a
generic hood with one window. The influences of windows (W) and of the junction J between the tunnel and
hood are discussed later. For the moment we confine attention to the problem discussed in Section 5.2 (no
hood and no windows, Rh ¼ R) and examine how the calculated wavefront pressure pE is augmented by
frictional forces that generate an additional pressure pD responsible for the gradual and practically linear
increase in the measured pressure to the rear of the main pressure rise in Fig. 16. This pressure is produced by
the vortex sources

r � ðHrx ^ vÞ þ Zr � ðrH ^ xÞ (59)

of Eq. (15), which arise in the region to the rear of the point labelled S in Fig. 17, where the flow over the train
in the tunnel separates, causing turbulence to progressively fill the region between S and the portal [39].

The length of the turbulent zone increases uniformly at the speed U of the train. The dominant contribution
to pD is the skin friction dipole (second member of Eq. (59)) — the contribution from interior vortex sources is
of quadrupole strength and may be neglected; there is also a small additional contribution from the ‘exit flow
vortex’ of Fig. 17, but this is usually small. The overall contribution from the turbulence sources can be



ARTICLE IN PRESS

Fig. 17. Principal sources contributing to compression wave formation.
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represented by (Howe and Iida [39])

pDðx; tÞ ¼ �ro

Z 1
�1

dt
I

S0
v2	ðy; tÞ

qG

qy1

ðx; y; t; tÞdSðyÞ; y ¼ ðy1; y2; y3Þ, (60)

where the surface integral is over those surface sections S0 of the train and interior hood and tunnel walls
‘wetted’ by the separated flow, and v	ðy; tÞ is the friction velocity on S0. If the front of the train nose is assumed
to cross the entrance plane of the hood at t ¼ 0, the integrand in Eq. (60) is null for toL=U .

The characteristic length scale of pD� ‘wetted length of the train’=M, and may therefore be calculated using
the compact Green’s function (51) by taking, for sources within the tunnel,

qG

qy1

ðx; y; t; tÞ � �
1

2A
d t� t�

ðx� y1Þ

co

� �
þ d t� tþ

ðxþ y1 � 2‘EÞ

co

� �� �
. (61)

The collective action of all surface elements of the train and tunnel subject to the turbulence fluctuations
produces a predominantly steady drag force per unit surface area [39]. For the purpose of evaluating Eq. (60)
it is therefore permissible to put v	 ¼ mU rel where m is a constant ‘friction factor’ and U rel is the mean turbulent
flow velocity relative to the surface S0 (which assumes different values on the surfaces of the train and tunnel
walls).

Predictions of pD from Eq. (60) for given train speed U depend on the value of the friction coefficient m. The
values of m appropriate for model scale tests and at full scale are unlikely to be equal because of the overall
absence of Reynolds number similarity, and because of the very significant differences in the effective surface
roughness at model and full scale. For application to the case in Fig. 16 it is assumed that m ¼ 0:053, which is
seen to yield excellent agreement with the measured pressure.

5.4. The flared portal

A perfectly linear pressure rise across the compression wave front can be achieved by suitably flaring the
tunnel portal over an axial distance ‘, say, in the manner indicated in Fig. 18a. In this case the wavefront
thickness �‘=Mb‘ and the compact approximation should still be applicable. The acoustic problem is
dynamically equivalent to calculating the pressure wave generated by the train together with its image in the rigid
ground plane (y ¼ 0) within a flared duct consisting of the tunnel and its image in the ground (Fig. 18b), which
closely resembles the experiment in the photograph of Fig. 19 involving a flared duct of circular cross-section.

To find the function j	EðxÞ for use in Eq. (53) we assume that the tunnel cross-sectional area SðxÞ decreases

smoothly from AE � pR2
E at x ¼ 0 to the uniform valueA ¼ pR2 for xp� ‘. Changes in SðxÞ are assumed to

be sufficiently slow that j	E satisfies the following simplified form of Laplace’s equation within the tunnel [36]

1

SðxÞ

q
qx

SðxÞ
qj	E
qx

� �
¼ 0; xo0 (62)
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Fig. 18. (a) Train entering a tunnel with a flared portal of length ‘; (b) axisymmetric flared portal.

Fig. 19. Flared portal and cylindrical tunnel with a wire-guided axisymmetric model train [36].
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with solution

j	EðxÞ ¼A

Z x

0

dx
SðxÞ
þ C; xo0, (63)

where C is a constant. If the flange is taken to be infinite, the behaviour of j	EðxÞ outside the tunnel (x40Þ is

approximately the same as the potential of flow produced by a ‘piston’ of area AE in a plane wall at x ¼ 0,
moving with normal velocity ðqj	E=qxÞx¼0 ¼A=AE . When x lies on the axis of symmetry (the x-axis), the
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condition that j	EðxÞ ! 0 as x!þ1 then yields

j	EðxÞ ¼ �
AR

AE

AE

A
þ

x2

R2

� �1=2

�
x

R

" #
; x40. (64)

Equating expressions (63) and (64) at x ¼ 0, we find C ¼ �R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=AE

p
, and the end-correction is then given by

‘E ¼ R

ffiffiffiffiffiffiffiffi
A

AE

r
þ

Z 0

�1

A

SðxÞ
� 1

� �
dx. (65)

To determine the functional form of the portal cross-section SðxÞ, consider again a ‘snub-nosed’ train for which
AT ðsÞ=Ao ¼ HðsÞ. Then Eq. (55) becomes

pE �
roU2

ð1�M2Þ
1þ

Ao

A

� �
Ao

Sð�U ½t�Þ
; U ½t�=R40, (66)

after the nose has crossed the entrance plane into the flared section of the tunnel, where most of the pressure rise
occurs. During this time Sð�U ½t�Þ decreases from AE to A, and the pressure rises from

roU2

ð1�M2Þ
1þ

Ao

A

� �
Ao

AE

to
roU2

ð1�M2Þ
1þ

Ao

A

� �
Ao

A

at the respective instants at which the nose enters the tunnel portal and when the nose passes into the uniform
section of the tunnel. This increase will have an optimal linear variation provided 1=Sð�U ½t�Þ increases linearly
with the retarded time, that is when

SðxÞ

A
¼ 1

A

AE

�
x

‘
1�

A

AE

� �� ��
; �‘oxo0. (67)

If the length ‘ of the flared section is prescribed (i.e. when it is desired to have a compression wavefront of
thickness �‘=M), the value of the portal cross-section AE is determined by requiring the pressure to vary

smoothly at U ½t�=R ¼ 0, when the nose enters the tunnel. This implies that q2j	Eðx; 0; 0Þ=qx2 defined by

approximations (63) and (64) should be continuous at x ¼ 0, i.e. that

AE

A
¼

‘

2R

� �2=3

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2R

3
ffiffiffi
3
p

‘

� �2
s0

@
1
A

1=3

þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2R

3
ffiffiffi
3
p

‘

� �2
s0

@
1
A

1=3
2
64

3
75
2

. (68)

The optimally flared portal should produce a smooth, linear compression wavefront when the snub-nosed
train is replaced by one of the more realistic profile, provided the line source (50) defining the equivalent source
strength of a smoothly profiled nose can be approximated by a suitably positioned point source. The photograph
of Fig. 19 shows the model scale experiment performed at RTRI to test this hypothesis [36], involving a flared
portal (shown with the flange removed) constructed to the above specifications when R ¼ 50mm and
‘ ¼ 500mm, so that AE=A ¼ 5:35 and RE=R ¼ 2:31 when ‘=R ¼ 10.

Fig. 20 illustrates a comparison of theory (Eq. (53)) and experiment (4 4 4) when the optimally flared
portal is flanged. The train nose is defined as in Eqs. (57) and (58) with h ¼ 22:35, L ¼ 111:8mm, and for
R ¼ 50mm, ‘ ¼ 500mm, and the train speed U ¼ 296 km=h. The train is projected along the axis of symmetry
and the nose enters the flared section at U ½t�=R ¼ 0, following which the pressure rises linearly until just after
its arrival at the uniform section of the tunnel at U ½t�=R�10, producing a compression wave of thickness
�10R=M ¼ 207 cm. Because of the large expansion in the cross-section of the tunnel at the portal, the
contribution pD from the turbulent drag is negligible, and is ignored.
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Fig. 20. Compression wave generated by a train with ellipsoidal nose entering at U ¼ 296km=h a circular cylindrical tunnel of radius

R ¼ 50mm with an optimally flared portal of length ‘ ¼ 500mm: n n n, pressure measured at a distance 1.55m from the portal entrance

plane; ——– Eq. (53).

Fig. 21. Experimental ‘short hood’ with slit window showing an axisymmetric model train travelling along the ‘far’ track.
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5.5. Failure of the compact approximation

The impending increase in operating speeds (4350 km=h) of high-speed rail networks has revealed a need to
upgrade the current generation of tunnel entrance hoods. These are ‘short hoods’ typically of length ‘h equal
to about twice the tunnel height. Fig. 21 illustrates a typical model scale circular cylindrical hood used to study
compression wave generation in short hoods [40]. The model scale tunnel has internal radius R ¼ 50mm and
the circular cylindrical hood of internal radius Rh ¼ 1:25R has length ‘h ¼ 2R. According to Fig. 16b it might
be expected that the compression wave thickness �2R=M�6R, and therefore that it is valid to treat the hood
as acoustically compact for the purposes of calculating the compression wave. The compression wave pressure
is then p ¼ pE þ pD, where in particular pE is determined by the compact approximation (53) in terms of the
potential function j	EðxÞ, which must be determined by the numerical integration of Laplace’s equation. This
is easily done in the absence of windows, when the streamline pattern has the axisymmetric form shown in
Fig. 22a. Along the path of the ‘train’ qj	E=qx decreases to zero outside the hood in two stages as x increases
from negative values (Fig. 22b), and the compression wavefront would therefore be expected to exhibit a
similar behaviour.

Predictions (� � �) of the compact approximation for pðx; tÞ ¼ pEðx; tÞ þ pDðx; tÞ and for the ‘pressure
gradient’ qp=qt are shown in Fig. 23 for a short, windowless hood (R ¼ 50mm, Rh ¼ 1:25R, ‘h ¼ 2R) and for
the ellipsoidal train nose defined by Eqs. (57) and (58) (with h ¼ 22:35mm, L ¼ 67:05mm) when the track



ARTICLE IN PRESS

Fig. 22. (a) The streamline pattern of the potential flow from a short hood determined by j	E ðxÞ; (b) variations of qj	E=qx and

�R q2j	E=qx2 along zt ¼ 0 ð� � �Þ and zt ¼ 0:38R (——).

Fig. 23. Measured pressure (4 4 4) and pressure gradient (� � �) profiles compared with (i) the compact approximation (� � �) and

(ii) the full prediction (——) for the hood of Fig. 22 and the ellipsoidal train nose defined by Eqs. (57) and (58) (h ¼ 22:35mm,

L ¼ 67:05mm) when zt ¼ 0:38R, U ¼ 400km=h, ro ¼ 1:182kg=m3.
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offset zt ¼ 0:38R, U ¼ 400 km=h (M ¼ 0:33Þ and ro ¼ 1:182 kg=m3. The predictions are qualitatively correct,
but there are significant mismatches in phase and amplitude in the critical region of the compression-wave
front, particularly noticeable when theory and experiment are compared for the subjectively important
pressure gradient qp=qt. These differences indicate that important contributions to the overall phase of the
wavefront are influenced by multiple reflections from the ends of the short hood, i.e. that the hood is not

compact. The solid curves in Fig. 23 correspond to predictions of the ‘noncompact’ theory, the main points of
which will now be summarized.

5.6. The noncompact hood without windows

The thickness of the compression wavefront exceeds the characteristic tunnel height R by a factor �1=M,
which is large even at the larger operating speeds involving Mach numbers �0:4. Local interactions in a
noncompact hood are therefore the same as for the compact case, but their relative phases must take account
of the finite time of travel of sound waves between opposite ends of the hood.
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The compression wave begins to form just before the train nose enters the hood (at the portal E in Fig. 17).
The interaction of the train nose with the portal produces a compression wave that propagates as a plane wave
ahead of the train and (in the absence of windows in the hood walls) subsequently interacts with the junction J
of the hood and tunnel before the arrival of the train. At J the wave is partially transmitted into the tunnel and
partially reflected back towards the entrance with (long wavelength values of the) transmission and reflection
coefficients RJ and TJ given by

RJ ¼
Ah �A

Ah þA
and TJ ¼

2Ah

Ah þA
. (69)

The interaction of reflected waves with the train can be neglected in the usual case where Ao=Ahp0:2.
To a very good approximation, waves reflected back to the portal E can be assumed to be totally re-
flected at E with reflection coefficient RE ¼ �1. In practice four or five back-and-forth reflections
of pE between opposite ends of the hood are necessary before most of the initial wave energy has passed
into the tunnel.

The arrival of the train nose at junction J results in the generation of a second important pressure wave pJ ,
say, which propagates into the tunnel as a compression wave and back towards E as an expansion wave; again,
the latter component of this wave experiences multiple reflections from the ends of the hood, but ultimately
(after several round trips within the hood) most of its energy is transmitted into the tunnel and contributes to
an extended profile of the compression wave front.

All of these interactions and multiple reflections are contained in the following noncompact extension of
portal Green’s function (51) [41]

Gðx; y; t; tÞ ¼
coTJ

2Ah

X1
n¼0

Rn
ER

n
J H ½t� � t�

ð2n‘ þ j	ðyÞÞ
co

� ��

þREH ½t� � t�
ð2n‘ � j	ðyÞÞ

co

� ��
; x!�1 ðin the tunnelÞ, (70)

where ½t� ¼ tþ ðx� ‘EÞ=co is the retarded time and ‘ ¼ ‘h þ ‘E .
The potential function j	ðxÞ represents the velocity potential of flow out of the portal E from x ¼ �1, such

that

j	ðxÞ�
x� ‘E for jxjbRh within the hood;

�Ah=4pjxj for jxjbRh outside the hood;

(
(71)

where the end-correction ‘E � 0:61Rh for a circular cylindrical portal [6].
To a good approximation j	ðxÞ can be approximated near E by the potential j	EðxÞ used in Eq. (51), for

flow from a semi-infinite hood of radius Rh. In the neighbourhood of the junction J (at x�� ‘h)

j	ðxÞ ¼
Ah

A
j	JðxÞ � ð‘h þ ‘EÞ, (72)

where j	J ðxÞ is the velocity potential of incompressible flow through the junction of two semi-infinite

cylindrical ducts meeting at J, such that

j	JðxÞ�

xþ ‘h � ‘j for jxþ ‘hjbR in the tunnel;

A

Ah

ðxþ ‘hÞ for jxþ ‘hjbRh in the hood;

8><
>: (73)

where ‘j�0:05R is the effective ‘length’ of the junction [41]. The behaviour of j	JðxÞ near J can therefore be
found using, say, a finite difference approximation to the equations for potential flow through a discontinuous
change in cross-section in a circular duct infinite in both directions.



ARTICLE IN PRESS

Fig. 24. Predictions of the compression wave pressure and pressure gradient (——) compared with experiment (4, �) for a model scale

ellipsoidal nose train defined by Eqs. (57) and (58) (h ¼ 22:35mm, L ¼ 67:05mm) entering at U ¼ 301km=h a circular cylindrical tunnel

with an unvented hood when R ¼ 50mm, Rh ¼ 1:25R, ‘h ¼ 10R, zt ¼ 0:4R.
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In terms of this modified Green’s function, the net pressure wave pH generated ahead of the train in the
tunnel by the interaction of the train nose with both ends of the hood is found to be

pH ðx; tÞ �
roU2

Ahð1�M2Þ
1þ

Ao

A

� �
TJ

X1
n¼0

ð�1ÞnRn
J

Z 1
�1

qAT

qx0
ðx0 þU ½t� � 2nM‘Þ

qj	E
qx0
ðx0; 0; ztÞdx0

þ
roU2

2Að1�M2Þ
1þ

Ao

A

� �
TJ

X1
n¼0

ð�1ÞnRn
J

Z 1
�1

qAT

qx0
ðx0 þU ½t� � ð2n� 1ÞM‘Þ

�

þ
qAT

qx0
ðx0 þU ½t� � ð2nþ 1ÞM‘Þ

�
qj	J
qx0
ðx0; 0; ztÞdx0. (74)

The first sum in this equation represents all components of the pressure produced by the interaction of the
train nose with the portal E; the second consists of all those waves generated at time �‘h=U later, as the train
passes into the tunnel from the hood.

This formula replaces the much simpler expression (53) that is applicable in the absence of the hood. The net
pressure radiated into the tunnel is now p ¼ pH þ pD, when the component pD due to frictional forces is
included. This combination has been used to plot the solid curves in Fig. 23 for the short hood.

Fig. 24 shows a comparison of theory and experiment for a long hood with ‘h ¼ 10R, when U ¼ 301 km=h,
zt ¼ 0:4R, ðM�0:25Þ and ro ¼ 1:23 kg=m3, m ¼ 0:053. All other dimensions of the hood and train nose are the
same as for the short hood of Fig. 23. The agreement between measurement and theory is maintained up to
about U ½t�=R ¼ 14, after which the measured pressure falls off because of the imminent arrival of the train tail
at the hood portal. Multiple reflections within the hood are responsible for the ‘rippled’ pressure profile and
the ‘pulsatile’ pressure gradients shown in the figure. In contrast to the smooth and uniform pressure rise
produced by the flared hood (Fig. 20), the effect of reflections is to cause a step-wise transmission of acoustic
energy into the tunnel from the hood, so that although the compression wavefront is thickened by the hood
(and, in particular, the maximum value of the subjectively important pressure gradient qp=qt is reduced) the
pressure rise is not uniform.
5.7. Influence of hood windows

A window may be regarded as a monopole acoustic source in the hood excited by the train. Consider the
simplest case of a hood with one window (W in Fig. 17). When the wave generated as the train nose enters the
hood portal E arrives at the window, the pressure at the wave front falls rapidly because the window initially
behaves as a pressure node that generates an expansion wave pW propagating in both directions away from the
window. Vorticity production at the window quickly leads to the formation of a high-speed jet whose velocity



ARTICLE IN PRESS

Fig. 25. Compression wave pressure for the model scale train defined by Eqs. (57) and (58) (h ¼ 22:35mm, L ¼ 67:05mm) when

U ¼ 352km=h; R ¼ Rh ¼ 50mm, and the hood wall has thickness ‘w ¼ 0:1R; there is one rectangular window of axial and azimuthal

lengths ‘x ¼ 0:8R, ‘y ¼ 0:4R, centred at x ¼ �‘h ¼ �10R: (——) overall predicted pressure wave transmitted into the tunnel; (� � �)

transmitted wave for irrotational window flow; (� � �) pressure pulse pjet produced by the jet flow from the window.
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increases typically to about 50% of the train speed. The jet vorticity is an aeroacoustic source, producing a
pressure pulse that arrests the fall in pressure at the window, and causes the compression wave generated at the
hood entrance to be transmitted past the window at reduced but constant amplitude. Subsequent reflections of
this wave from the ends of the hood, and the additional pressure variations at W produced by the wave
generated as the nose passes the junction J, also cause small fluctuations in jet velocity, but the most significant
change in jet speed occurs when the train nose passes the window, following which pressure at the window
decreases rapidly to a level only marginally higher than atmospheric and the radiation from the window into
the tunnel decreases. In the meantime, once the nose has passed the window the pressure in front of the nose
rises to a level comparable to the value it would have had if the window had been absent, causing the pressure
at the rear of the compression wave front to rise. A similar but obviously more complicated set of interactions
occurs in the presence of several windows, when in addition waves are reflected at the windows and the
separate window jets are coupled by pressures reflected back and forth within the hood; these in turn produce
further modifications of the compression wave front.

These remarks are illustrated in Fig. 25 for the simplest case of a single rectangular window positioned as in
Fig. 15 with its centre at x ¼ �‘h ¼ �10R, when Rh � R. The figure compares the predicted overall
compression wave profile (——, for conditions given in the figure caption) with that (� � �) when the window
flow is assumed to be irrotational (no jet). The irrotational pressure falls rapidly behind the wave front ‘A’; the
subsequent rise after ‘B’ is produced by the combined contributions of (i) the arrival of a second compression
pulse from the hood portal after reflection of the expansion wave formed when the original wave front arrives
at the window, and (ii) a reduction in the influence of the window caused by the decrease in volume flux
occurring as the train nose passes the window. In the real flow, vorticity production at the window generates
an additional pressure pulse pjet (� � �) whose effect is to maintain the pressure just to the rear of the wave
front ‘A’ at a roughly constant value until the initiation of mechanisms (i) and (ii) at ‘B’. The pressure fields of
the irrotational and rotational interactions combine to produce the overall compression wave profile. The
window-generated pressure pjet rises to a maximum at the retarded arrival time U ½t�=R�‘h=R�Mð‘h þ ‘EÞ=
R ð� 7) of the train nose at the window, following which it decreases as the pressure forcing air out through
the window becomes small.

To understand the nature of the radiation in the tunnel from the windows, note first that the pressure
fluctuations produced at the window by the compression wave generated at the portal E or by a passing train
have a time scale �2Rh=U . In particular the corresponding

compression wave front thickness�2Rh=M � 6Rh,
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Fig. 26. Experiment involving a hood of rectangular cross-section with a long slit-window, including the effect of the ground plane [45].
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which is typically much larger than a window diameter, so that the local tunnel pressure may be assumed
to be uniform over the inner face of the window. This also turns out to be a good approximation for the
dominant pressure fluctuation produced by the passage of the train nose past the window, determined
analytically by considering the passage of the equivalent source distribution (50) past the window [42]. The air
flow through the windows can then be calculated using empirical equations validated by Cummings for
circular apertures [6,25,42–44] — the details are too involved to be discussed here but are described in full in
Refs. [20,42].

Let VkðtÞ denote the mean jet velocity directed out of the hood in the plane of the kth window of area Ak

whose centre is at x ¼ xk. Because the characteristic acoustic wavelength bRh, the volume flow from the
window generates two equal plane acoustic waves propagating in both directions away from the window
within the hood. Before these waves interact with the ends of the hood or with any other window they produce
a pressure fluctuation within the hood equal to

�
rocoAk

2Ah

V k t�
jx� xkj

co

� �
. (75)

When Vk has been evaluated using the Cummings equations, the net pressure radiated into the tunnel from the
kth window can be determined by taking account of multiple reflections of the pressure (75) from the ends of
the hood, giving

pkðx; tÞ ¼ �
rocoAk

2Ah

TJ

X1
n¼0

ð�RJÞ
n Vk tþ

fx� xk � 2nð‘h þ ‘EÞg

co

� ��

� V k tþ
fxþ xk � 2nð‘h þ ‘EÞ � 2‘Eg

co

� ��
; xo� ‘h. (76)

The overall compression wave within the tunnel now consists of the component pH produced when the
windows are ignored, pDðx; tÞ from the frictional drag and the contribution from each window:

pðx; tÞ ¼ pH ðx; tÞ þ pDðx; tÞ þ
X

k

pkðx; tÞ. (77)

This formula has been used to calculate the results shown in Fig. 25.
As a final illustration (77) is applied to the experimental hood shown in Fig. 26 [45], which has a rectangular

cross-section with the inner horizontal width equal to 2R ¼ 150mm, the same as the maximum width of the
tunnel, and length ‘h ¼ 10R ¼ 750mm. In this case the tunnel has a more realistic ‘horseshoe’ cross-section
(not visible in the photograph, but such that the train blockage is still equal to 0.2.) and the hood height is
118.4mm. The window extends along the whole of one side-wall in the form of a 735-mm-long horizontal slit
of width 27mm.
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Fig. 27. Measured pressure (4 4 4) and pressure gradient (� � �) profiles and corresponding predictions (——) for an ellipsoidal train

nose defined by Eqs. (57) and (58) (h ¼ 27:5mm, L ¼ 116mm) for the hood of Fig. 26 with a long slit window when jztj ¼ 0:44R,

yt ¼ 0:5R, m ¼ 0:047: (a) U ¼ 399:6km=h, ro ¼ 1:155kg=m3, near; (b) U ¼ 400km=h, ro ¼ 1:157kg=m3, far.
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The theory outlined above is strictly applicable for windows whose individual areas are small compared to
the hood cross-section. The calculations for the slit are therefore performed by representing it by 10 adjacent
windows of equal areas Ak ¼ 73:5� 27mm2, distributed uniformly along the hood wall at height yt ¼ 0:5R

above the ground plane (more details are given in Ref. [45]).
Theory and experiment are compared in Fig. 27a for a ‘near’ slit zt ¼ 0:44R and in Fig. 27b for a ‘far’ slit

with zt ¼ �0:44R. There is good overall agreement between the predicted and measured waveforms. Evidently
the dominant effect of a long slit of relatively large open area is principally to delay the main pressure rise at
the wavefront compared to the corresponding case of no windows. The main delayed pressure rise is
practically equal to the full overall pressure rise (56) across the wavefront in the absence of the hood. A very
‘open’ slit extending the whole length of the hood therefore appears to vitiate the beneficial effects of
reflections within the hood.

6. Conclusion

Lighthill was a strong advocate of the use of vortex methods in fluid mechanics. It was Powell [2], however,
who pioneered the interpretation of vorticity as a source of sound. It is now recognized that a knowledge of
the vorticity distribution in a complex flow–structure interaction is not only essential for a proper
understanding of the mechanics of the motion, especially at low Mach numbers, but leads to the most effective
means of calculating the acoustic noise produced by such flows.

The original acoustic analogy expresses the equivalence of sound production by a flow and the generation of
sound in an ideal, stationary medium driven predominantly by Reynolds stress fluctuations. For homentropic
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flow the theory can be recast into a form where vorticity alone may be identified as the ultimate acoustic
‘source’. We have reviewed examples that show how the theory of sound production by vortex–surface
interactions is greatly facilitated by the introduction of the ‘compact’ approximation to the acoustic Green’s
function in situations where the solid surface is acoustically compact or, more generally (for noncompact
structures), where the surface supports locally compact regions of ‘noisy’ flow identified by the presence of
singularities in the ‘Kirchhoff vector’. These examples involve both rigid and deformable, compact and
noncompact bodies of practical and pressing importance, and demonstrate how predictions of sound
production in terms of vorticity frequently succumb to accurate analytical treatment when more conventional
and general approaches by way of detailed numerical modelling of a source flow are intractable.

In principle, a noisy compressible flow can always be simulated numerically and an attempt made to predict
the sound. There are, however, many flows that are just too complicated to be treated in this way in a timely
manner — computation of the sound will then be possible only when it is known more definitely which factors
have to be taken into account and which may be neglected. But when the dominant and noisy features of a
flow have been recognised in this way it is often possible and more useful practically (as with the example of
the compression wave generated by a high-speed train) to bypass a numerical treatment by judicious analytical
modelling of the identified sources.
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